The Journal of Agricultural Science <p><I>The Journal of Agricultural Science</I> publishes papers concerned with the advance of agriculture and the use of land resources throughout the world. It publishes original scientific work related to strategic, applied and interdisciplinary studies in all aspects of agricultural science and exploited species, as well as reviews of scientific topics of current agricultural relevance. </p> <p>Specific topics of interest include (but are not confined to): all aspects of crop and animal physiology; modelling of crop, animal, and integrated crop-livestock systems; the scientific underpinning of agronomy and husbandry; animal welfare and behavior; soil science and soil health; plant and animal product quality; plant and animal nutrition; engineering solutions; decision support systems; land use; environmental impacts of agriculture; agroforestry systems and forestry as it relates to agriculture; impacts of climate change; climate change adaptation and mitigation; climate-smart agriculture; carbon sequestration; rural biodiversity; experimental design and statistical analysis; and the application of new analytical and study methods, including genetic diversity and molecular biology approaches. </p> <p>The journal welcomes submissions specialising in molecular biology that also include an element of agriculture or agricultural application, and submissions on integrated crop-livestock systems. The journal also publishes book reviews, letters, and guest editorials. Occasional themed issues are published such as climate change and agriculture, and modelling of crop and animal systems.</p>
- Comparison of the welfare of beef cattle in housed and grazing systems: hormones, health and behaviourpor Cooke, Andrew S. el junio 29, 2023 a las 12:00 am
Animal welfare encompasses all aspects of an animal's life and the interactions between animals. Consequently, welfare must be measured across a variety of factors that consider aspects such as health, behaviour and mental state. Decisions regarding housing and grazing are central to farm management. In this study, two beef cattle systems and their herds were compared from weaning to slaughter across numerous indicators. One herd (‘HH’) were continuously housed, the other (‘HG’) were housed only during winter. Inspections of animals were conducted to assess body condition, cleanliness, diarrhoea, hairlessness, nasal discharge and ocular discharge. Hair and nasal mucus samples were taken for quantification of cortisol and serotonin. Qualitative behaviour assessments (QBA) were also conducted and performance monitored. Physical health indicators were similar between herds with the exception of nasal discharge which was more prevalent in HH (P < 0.001). During winter, QBA yielded differences between herds over PC1 (arousal) (P = 0.032), but not PC2 (mood) (P = 0.139). Through summer, there was a strong difference across both PC1 (P < 0.001) and PC2 (P = 0.002), with HG exhibiting more positive behaviour. A difference was found in hair cortisol levels, with the greatest concentrations observed in HG (P = 0.011), however such a pattern was not seen for nasal mucus cortisol or for serotonin. Overall, providing summer grazing (HG) appeared to afford welfare benefits to the cattle as shown with more positive QBA assessments, but also slightly better health indicators, notwithstanding the higher levels of cortisol in that group.
- Biofortification of maize growth, productivity and quality using nano-silver, silicon and zinc particles with different irrigation intervalspor Kandil, Essam E. el junio 29, 2023 a las 12:00 am
The current study aimed to investigate biofortification of maize grown under different irrigation intervals, i.e. 15, 20 and 25 days (hereinafter referred to as IR15, IR20 and IR25, respectively), using foliar application treatments (silicon (Si), zinc (Zn), silver nanoparticles (AgNPs), Si + Zn, Si + AgNPs, Zn + AgNPs and Si + Zn + AgNPs) in two growing seasons, 2020 and 2021. A split-plot design with four replications was used, where irrigation intervals and foliar treatments were assigned in main plots and subplots, respectively. IR15 received a total of 7925 m3/ha irrigation water divided over seven irrigations, while IR20 received 5690 m3/ha divided over five irrigations and IR25 received 4564 m3/ha divided over four irrigations. The highest yield and grain quality were observed in plants irrigated at 15-day intervals. Spraying the canopy with Si, Zn and AgNPs, either individually or in combination, reduced the negative impact of water stress caused by longer irrigation intervals on plant growth, yield, yield components and grain protein content. In IR15 + AgNPs + Zn, most of the studied parameters, except for proline content, showed a high positive impact, especially on 100-kernel weight (KW). In contrast, IR25 + Si + AgNPs + Zn showed the highest positive effects on proline and protein contents but a negative impact on the harvest index. Collectively, IR15 + Si + AgNPs + Zn resulted in the highest values of all studied parameters, followed by IR15 + Si + AgNPs and IR15 + Si + Zn. In conclusion, our results suggest that an irrigation interval of 15 days combined with application of Si, Zn and AgNPs has the potential to improve yield and quality of maize under water deficit stress.
- Impact assessment of heat stress during post-silking period of summer maize in the Huang-Huai-Hai Plain, Chinapor Fu, Zhenzhen el junio 8, 2023 a las 12:00 am
Arising of disasters by climate change had affected crop growth and yield, and then threaten local to global food security, particularly heat stress. Therefore, hazard assessment is essential to develop effective disaster risk management and adaptation interventions to ensure food security. In this study, the accumulated heat stress days (DAY), heat stress intensity (HSI) and heat degree-days (HDD) during the post-silking period of summer maize in The Huang-Huai-Hai Plain were investigated. Based on the optimal probability distribution function of HDD and information diffusion theory, we compute heat stress classification index and the possibility of heat stress, respectively. During 1981–2019, DAY, HSI and HDD were 11.8 d, 31.9°C and 23.6°Cd and increased by 0.67 d/decade, 0.10°C/decade and 3.14°Cd/decade, respectively. The threshold and hazard probability of mild, moderate and severe heat stress were 9.4, 19.4 and 34.2°Cd and 16.6, 9.3 and 4.5%, respectively. The heat stress hazard index (M) was 0.48, ranged from 0 to 0.77 during 1981 to 2019. M will increase in the future at all regions, particularly after 2060. Under SSP5-8.5 climate scenario, M ranged from 0.95 to 1.20 in 2080s, about two times than historical period. This could be used in optimizing agricultural management in summer maize production in order to combat heat stress under projected climate change.
- Nutritional compositions of Katuk leaves and their supplementation to hays of different quality: an in vitro studypor Nurdianti, R.R. el junio 6, 2023 a las 12:00 am
Katuk leaves (Sauropus androgynus (L.) Merr.; KL) are widely consumed by breast-feeding Indonesian mothers as it has been reported to increase breast milk production. It is hypothesized that supplementing KL in diets might increase crude protein (CP) concentration and fibre digestibility in the diet. The KL had high CP and non-fibre carbohydrate concentrations (333 and 332 g/kg dry matter; DM, respectively), but low neutral detergent fibre assayed with heat, a stable amylase and expressed exclusive of residual ash (aNDFom; 200 g/kg DM). Fibre digestibility linearly increased with increasing of KL supplementation in low-quality hay (LQH) diets. The KL did not contain a considerable amount of tannins. In LQH diets, gas production after 24 h incubation (GP24) linearly increased with increasing of KL supplementation (P < 0.001). Meanwhile, GP24 linearly decreased with increasing of KL supplementation in medium- and high-quality hays (MQH and HQH; P < 0.001). Metabolizable energy tended to linearly increase in LQH diets, but tended to linearly decrease with increasing of KL supplementation in MQH and HQH diets (P = 0.078). Therefore, this study suggested that KL can be a potential supplement in the ruminant diet due to its abundant dietary proteins but low fibre concentration in its leaves. However, further studies (e.g. in vitro or in vivo) investigating other rumen parameters after incubation should be performed to validate how KL can be supplemented in the diet of ruminant livestock.
- Yield and water productivity of rice grown under different irrigation methodspor Çebi, U. el junio 1, 2023 a las 12:00 am
The aim of the study was to investigate the suitability of subsurface and surface drip irrigation methods in rice farming. The field studies were carried out in split plots in randomized blocks trial design, with three repetitions during 2019 and 2020 in Thrace Region/Türkiye. Irrigation methods, surface drip (DI), subsurface drip (SDI) and conventional flooding (CF) were the main treatments; however, water amounts (I1: Class A-pan evaporation rate × 1.00, I2: Class A-pan evaporation rate × 1.25, I3: Class A-pan evaporation rate × 1.50) were designed as sub-treatments of the study. The results of the statistical analyses indicated that, the rice grain yield was significantly (P < 0.01) affected by the amount of the irrigation water. According to the results; while two different drip irrigation methods did not make a difference to yield and yield components, the difference between drip irrigation and CF was significant (P < 0.01). While the grain yields reached 10.3 and 8.70 t/ha under conditions of CF control during 2019 and 2020, the highest yield values obtained from plots with drip irrigation system and the highest Class A-pan evaporation rate x pan coefficient of 1.50 were 8.10 and 6.90 t/ha during the same two study years, respectively. However, much more effective use of water was observed under conditions of drip system application providing approximately 60–70% water saving v. 20–25% yield loss. In addition, economic analysis results indicated a higher relative profit rate of 1.66 in the case of drip irrigation than 1.41 under CF application.