Renewable Agriculture and Food Systems <I>Renewable Agriculture and Food Systems</I> <A href="http://journals.cambridge.org/jid_aja">(formerly <I>American Journal of Alternative Agriculture</I>)</A> is a multi-disciplinary journal which focuses on the science that underpins economically, environmentally, and socially sustainable approaches to agriculture and food production. The journal publishes original research and review articles on the economic, ecological, and environmental impacts of agriculture; the effective use of renewable resources and biodiversity in agro-ecosystems; and the technological and sociological implications of sustainable food systems. It also contains a discussion forum, which presents lively discussions on new and provocative topics.
- Pollinators and policy: the intersecting path of various actors across an evolving CAPpor Giovanetti, Manuela el junio 5, 2023 a las 12:00 am
Pollinators are a crucial group of organisms due to their role in the maintenance of environmental biodiversity and crop production. Pollinators may be very diverse; however, in temperate areas they are mainly insects, and the most active and important are certainly the bees. Not only the well-known honeybee: there are almost 2000 species of wild bees in Europe, and about 1000 just in Italy. There is an increasing public worry related to their decline and to the impact that this decline may have on agricultural production. The way public perception of the pollinator issue arises is generally neglected, especially by important stakeholders such as the farmers. Moreover, direct actions were not indicated by the policy till recently. We surveyed the main steps that possibly drove the current political perspective at the European and national (Italian) level. We found an increased boost toward healthier environments through the release of various documents. To look for changes that may include pollinator protection, we need to address the Common Agricultural Policies (CAPs), the tool that shapes the European agro-environments. A new CAP document has been recently released, and the Member States are moving toward the definition of eco-schemes to be adopted by farmers after payments. Italy placed pollinators in pole position with a dedicated eco-scheme: will pollinators finally be acknowledged?
- Cool-season cover crop effects on forage productivity and short-term soil health in a semi-arid environmentpor Ogunleye, Anuoluwapo M. el mayo 29, 2023 a las 12:00 am
There have been no systematic experiments conducted in Nevada's water-limited environment that examined the simultaneous benefits of soil health and feed value derived from cool-season cover cropping systems. The objective of this study was to determine the influence of different annual cool-season cover crop systems on above and belowground biomass production, plant tissue carbon and nitrogen, forage nutritive value (crude protein, acid, and neutral detergent fiber), relative feed value (RFV), and short-term soil health indicators under irrigation in a semi-arid environment. Treatments (cover crop systems) were a fallow (no cover crop), five monocultures of rye (Secale cereale L.), winter lentil (Lens culinaris Medik.), arrowleaf clover (Trifolium vesiculosum Savi), white sweetclover (Melilotus alba), forage kale (Brassica oleracea L.), and two three-species mixtures in 50-25-25 seeding ratios (CCM 1: rye, winter lentil, arrowleaf clover; CCM 2: rye, white sweetclover, forage kale). Cover crop systems were arranged in an RCBD with three replications. Plots were fall seeded in Reno, NV early October of each year (2020 and 2021) and terminated at the end of July of 2021 and 2022, respectively. Averaged across years, aboveground biomass production was lowest for the monoculture of winter lentil (4104 kg DM ha−1; SE = 1551) compared to all other cover crop systems (average = 7593 kg DM ha−1; SE = 1551). Biomass carbon produced was lowest for winter lentil (1717 kg ha−1; SE = 675) relative to all other cover crop systems (average = 3227 kg ha−1; SE = 675). The CCM 1 system had a greater C/N ratio (36.3) than CCM 2 and the monocultures of winter lentil, arrowleaf clover, and white sweetclover (average = 24.9). Belowground biomass did not differ among cover crop systems (average = 3161 kg DM ha−1; SE = 962). Crude protein concentration was similar among cover crop systems but the RFV was greatest for forage kale (RFV = 165; SE = 4.0) among all cover crop systems. Soil total N and organic carbon concentration did not differ among cover crop systems but soil K concentration was greatest under fallow (428 mg kg−1 soil; SE = 26) relative to all other systems (average = 345.6 mg kg−1 soil; SE = 26). Soil microbial community biomass was not altered by cover crop system or its interaction with year. While the short-term impact of the cover crop systems on soil health indicators was minimal relative to the fallow system, the overall results suggested that there is potential to integrate cover crops in Nevada's semi-arid environment under irrigation.
- Characterizing food systems to better understand their vulnerabilities: a case study in Québec and São Paulopor Sabio, R. P. el mayo 26, 2023 a las 12:00 am
Characterizing food systems, i.e., describing their organizational features, can help to generate a better understanding of the structural vulnerabilities that constrain transitions towards sustainable food security. However, their characterization across different economic contexts remains challenging. In this paper, by linking key concepts from research on food regimes, food system vulnerabilities and responsible innovation, we aim to characterize food systems in a developing and a developed economy to identify their shared vulnerabilities. We applied a case study design to characterize food production, processing and distribution in the province of Québec (Canada) and in the state of São Paulo (Brazil). In both cases, the processing and distribution stages have higher economic predominance when compared to the agricultural production stage. Furthermore, we observed concentration in a few activities in both food systems, with a shared focus on export-oriented supply chains. Vulnerabilities in both food systems include: (1) increased interdependence because some supply chains are export-oriented or depend on foreign labor and are, therefore, exposed to external risks; (2) concentration in a few activities, which threatens present and future local food diversity and (3) unequal power relations, making small and medium players vulnerable to decisions made by big players. The characterization developed in this study shows that the two food systems are mainly pursuing economic goals, following the institutional logics of the neoliberal food regime, which are not necessarily aligned with food security goals. It also exposes the presence of characteristics of ‘responsibility’ that may eventually help overcome food systems' vulnerabilities and support transitions toward sustainability.
- A critical review of on-farm food loss and waste: future research and policy recommendationspor O'Connor, Jessica el mayo 19, 2023 a las 12:00 am
On-farm food loss and waste is estimated to be 16% of the total agricultural-related greenhouse gas emissions globally, and reductions in these emissions have the potential to make a significant impact on climate change. There is a plethora of research being undertaken in this area across countries, food supply chains and stakeholders. However, differences in definitions, quantification methods, understanding of drivers and proposed solutions can be difficult to navigate. This narrative review provides a critical overview of the current research landscape of on-farm food loss and waste. The review has two objectives. Firstly, it provides a stock-take of on-farm food loss and waste definitions, quantification methods, causes and management options. Secondly, it provides researchers, policy makers and industry stakeholders with recommendations on opportunities to be pursued.
- Preliminary findings of northeast organic and conventional dairy farmers' perception of benefits and challenges in feeding algaepor Tynan, Michelle K. el mayo 9, 2023 a las 12:00 am
Enteric fermentation from livestock accounts for over a quarter of the United States' methane emissions. A potent greenhouse gas, methane has 80 times the global warming potential of carbon dioxide over a 20-year period. An emerging focus of research is the incorporation of algae (e.g., kelp, seaweed or microalgae) into livestock feed, with several studies documenting dramatic suppression of enteric methane emissions in cattle. As part of a nationwide multidisciplinary study of using algae feed supplements to reduce methane emissions and improve dairy productivity, we used focus groups and individual interviews to measure organic and conventional dairy farmer's knowledge and opinions of algae-based feed supplements. Our goals were to learn what both organic and conventional dairy farmers know about algae-based feed supplements, why they do or do not feed them to their cows and if they were interested in the methane-reducing potential of these algal-based feeds. We also sought to understand where they get valued information about animal nutrition. We found most farmers were aware of algae-based feed supplements on the market, but organic farmers were more familiar with marketing claims. Farmers reported feeding algae-based feed supplements to address herd health concerns, especially reproductive issues and pink eye, but expressed rising costs of the supplements as an obstacle. Both organic and conventional farmers expressed interest in suppressing methane emissions, but only if incentives are provided. Lastly, participants receive trusted information about feed supplements from their dairy nutritionists, who help them make decisions around feed purchasing and rations.